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Abstract—Deep learning (DL) plays a more and more impor-
tant role in our daily life due to its competitive performance in
industrial application domains. As the core of DL-enabled sys-
tems, deep neural networks (DNNs) need to be carefully evaluated
to ensure the produced models match the expected requirements.
In practice, the de facto standard to assess the quality of DNNs
in the industry is to check their performance (accuracy) on
a collected set of labeled test data. However, preparing such
labeled data is often not easy partly because of the huge labeling
effort, i.e., data labeling is labor-intensive, especially with the
massive new incoming unlabeled data every day. Recent studies
show that test selection for DNN is a promising direction that
tackles this issue by selecting minimal representative data to
label and using these data to assess the model. However, it still
requires human effort and cannot be automatic. In this paper,
we propose a novel technique, named Aries, that can estimate
the performance of DNNs on new unlabeled data using only
the information obtained from the original test data. The key
insight behind our technique is that the model should have similar
prediction accuracy on the data which have similar distances to
the decision boundary. We performed a large-scale evaluation
of our technique on two famous datasets, CIFAR-10 and Tiny-
ImageNet, four widely studied DNN models including ResNet101
and DenseNet121, and 13 types of data transformation methods.
Results show that the estimated accuracy by Aries is only 0.03%
— 2.60% off the true accuracy. Besides, Aries also outperforms
the state-of-the-art labeling-free methods in 50 out of 52 cases
and selection-labeling-based methods in 96 out of 128 cases.

Index Terms—deep learning testing, performance estimation,
distribution shift

I. INTRODUCTION

Deep learning (DL) has been continuously deployed and
applied in different industrial domains that impact our social
society and daily life, such as face recognition [1], [2],
autonomous driving [3], [4], and video gaming [5], [6]. As
the core of DL-enabled systems, deep neural network (DNN)
follows the data-driven development paradigm and learns the
decision logic automatically based on the incorporated learned
knowledge of training data. Similar to traditional software that
needs to be well tested, DNNs also need to be comprehensively
evaluated before deployment to reduce potential risks in the
real world [7], [8].

A common de facto standard to assess the quality of DNNs
in the industry is by evaluating DNNs on a collected set
of labeled data. In practice, when building a DNN model,
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developers often split a dataset into the training set, validation
set, and test set. The test set is mainly used to measure the
accuracy of the trained model (as an indicator of performance
generality), thus, the final developed DNN often comes with
the reported test accuracy. However, the original test set often
only covers a part of the data distribution (generally, the same
distribution as the training data). The distribution of unseen
data is often unclear in the practical context, and the reported
test accuracy is hard to reflect the actual model performance
in real usage. Therefore, in addition to testing models on the
original test data, it is highly desirable to conduct performance
evaluation of DNNs on new data, which is generally available
from a large amount of daily or monthly incoming data.

However, different from the original test data that already
have been labeled, the unseen/new data are usually raw with
the absence of label information. It is challenging to assess a
model on unlabeled data. More importantly, labeling all the
new data (that could be large in size) is labor-intensive and
time-consuming, which is almost impossible and impractical.
For some complex tasks, domain knowledge from experts is
mandatory, leading to the labeling even harder. For example,
it takes more than 600 man-hours for experienced software
developers to label all the codes from 4 libraries [9].

Towards addressing the data labeling issue for more effi-
cient DNN testing, recently, researchers have adapted the test
selection concept [10], [11] from the software engineering
community to select and label a subset of representative data,
then test and assess the model accordingly. For example, Li ef
al. proposed cross entropy-based sampling (CES) [12] to select
a subset that has the minimum cross-entropy with the entire
test dataset to test the DNN. In this way, the labeling effort can
be significantly reduced and the testing has acceptable bias.
However, although test selection is a promising direction for
efficient DNN testing, the labeling efforts and costs persist. To
bridge the gap, in this paper, we aim to automatically estimate
the test accuracy without extra manual labeling.

To this end, we propose a novel technique, Aries, to effi-
ciently estimate the performance of DNNs on the new unseen
data based on existing labeled test data. The intuition behind
our technique is: there can be a connection between the
prediction accuracy of the data and the distance of the
data from the decision boundary. More specifically, given
two datasets whose distribution of the distance to the deci-



sion boundary is close, they could share a similar prediction
accuracy. A preliminary empirical study is first conducted to
validate our assumption. Specifically, we adopt the existing
dropout-based uncertainty to estimate the distance between
the data instances and the decision boundary. By splitting the
uncertainty score into n intervals, we obtain n buckets of the
distance distribution. Then, we can map the data instances into
a bucket based on their uncertainty scores. With this, we can
estimate the accuracy of each bucket based on the original test
data (with labels) that fall into this bucket as the supporting
evidence (points). Finally, given the new data without labels,
we map them into different buckets and leverage the estimated
bucket accuracy to calculate the overall accuracy of the new
data. Compared to existing techniques that need the labeled
data to calculate the model accuracy, Aries is fully automatic
without extra human labeling effort.

To assess the effectiveness of Aries, we conduct in-depth
evaluations on two commonly used datasets, CIFAR-10 and
Tiny-ImageNet, four different DNN architectures, including
ResNet101 and DenseNet121. Besides the original test data,
we also use 13 types of transformed test sets (e.g., data
with added brightness) to simulate the new unlabeled data
that could occur in the wild, where the transformed data
could follow different data distributions from the original test
data [13]. The results demonstrated that Aries could precisely
estimate the performance of DNN models on new unlabeled
data without further labeling effort. Compared to the real
accuracy, the estimated accuracy exhibits a difference ranging
from 0.03% to 2.60% by using the default parameter setting.
Besides, compared to the state-of-the-art (SOTA) labeling-free
model performance estimation methods [14], Aries can predict
more accurate accuracy. And compared to the test selection
methods CES [12] and PACE [15], which need to label a
portion of test data, Aries can still achieve competitive results
without extra labeling. Moreover, we conduct ablation studies
to explore the impact of each component of Aries on the
estimation performance.

To summarize, the main contributions of this paper are:

e« We propose a novel DNN testing technique for quality
assessment, Aries, that can efficiently estimate the model
accuracy on unlabeled data without any labeling effort.

« We empirically demonstrate that Aries can achieve better re-
sults than SOTA labeling-free model performance estimation
methods and competitive results compared to test selection
methods that require human labeling effort.

« We also comprehensively explore each potential factor that
could affect the performance of Aries and provide the
recommendation parameters.

o We release all our source code publicly available!, hoping
to facilitate further research in this direction.

Thttps://github.com/wellido/Aries

II. BACKGROUND
A. DNN Testing

DNN testing [16] is an essential activity in the DL-enabled
software development process to ensure the quality and reli-
ability of DNN before deployment. Generally, a deep neural
network (DNN) is trained using a large number of labeled
data, the so-called training set, with a validation set to estimate
the performance (accuracy in this paper) error. Usually, the
term “validation set” is used interchangeably with “test set”
given the assumption that the validation set and the test set
are derived from the same data distribution as the training set.
A minor difference is that the validation set is mostly used
in the training process to search for better training settings
and configurations. Test data plays the role of future unseen
data to estimate how the trained DNN performs in future
unseen cases. Although the fundamental assumption of modern
machine learning is that, the test (unseen) data and training
data share a similar distribution, under which the performance
obtained on training data could also generalize to the test data,
such an assumption often does not hold for DNNs deployed in
the wilds. For many real-world applications, the new test set
(i.e., future unseen data) can hold a different distribution [17]
that undermines the confidence of the obtained accuracy. For
example, given a DNN trained on an image set with low
contrast, the newly selected images are with high contrast [18].
As a result, the accuracy of the original test set cannot reflect
the actual accuracy of the new test set. Moreover, the new
data are usually raw and unlabeled to directly compute the
accuracy, which requires the developers’ dedicated testing. For
simplicity, in this paper, we use “original test data” to represent
the labeled test data that are accompanied by the training set
and “new unlabeled data” to indicate the unlabeled test set.

B. Test Optimization in DNN Testing

Given an unlabeled test set, the most straightforward way
to obtain the DNN accuracy is to manually label each data
and compare the difference between the ground truth and
predicted labels. However, the labeling effort can be costly
in labor expense and time. As mentioned in the literature, test
selection [15], has been demonstrated as a promising solution
to optimize the testing process. Test selection techniques
can be divided into two categories: 1)The first one is test
prioritization, which tries to identify the data most likely to
be misclassified [19]. After finding these data, they can be
used to further enhance the pre-trained model (e.g., by model
retraining). 2) The other one is to select a subset of data
that can reflect the behavior of the whole set [15]. In this
technique, a fixed number of relevant test data are selected
via a specific method and manually labeled to calculate the
accuracy. The selected set, by default, is (expected to be)
representative of the entire set and, thus, the obtained accuracy
can approximately reflect the DNN accuracy on the whole
given set. Although in this way, the labeling effort can be
greatly reduced to a few data, it can still be impractical are
too large to be handled under a given budget (e.g., labeling



time, available cost). In this paper, our proposed technique
falls into the second category.

III. METHODOLOGY

We first introduce the insight and assumption of Aries,
then conduct preliminary studies to empirically validate our
assumptions, and finally present the details of Aries.

A. Key Insight and Assumption

Our assumption is that there could be a correlation between
the prediction accuracy and the distance of the data from the
decision boundary. To better understand this assumption, Fig. 1
depicts an intuitive example of a binary classification with a
decision boundary (blue solid lines) splitting the data space
into 2 regions. Since the data falling into the same region will
be predicted by the same label, but with different confidences,
we split each region further into multiple sub-regions based
on its distance to the boundary. In the figure, we evenly split
the space into 3 buckets (Bucketl, Bucket2, and Bucket3) by
the distance h. We assume that, for data in the same bucket,
the probability of making the (in)correct prediction is similar,
i.e., the model has the same performance on these data. Thus,
if we can obtain the model accuracy in each bucket and map
new data into the corresponding bucket, we can approximate
the model accuracy on these new data.

The essential insight of our assumption is to measure the
distance between data and decision boundaries (i.e., how
to define /4 in Fig. 1). Given the fact that the data space
is usually high dimensional and complex, it is difficult to
directly describe the decision boundary. Recently, the dropout
uncertainty [20], [21] has been widely used to estimate the
distance of the data from the decision boundary. Roughly
speaking, given one data and a model with dropout layers.
After using this model to predict the data multiple times,
if the predicted outputs have a huge variance, we say this
data might be uncertain by the model and near the decision
boundaries. We employ the dropout uncertainty in Aries for
the distance approximation and will explore other options in
the configuration study. At a high level, our insight is sound
and practical in the way that the prediction confidence of a
DNN follows a particular distribution that is automatically
learned from the training data in the training process. When a
test sample falls into a distribution and prediction confidence
region, our fine-grained split region could provide a certain
level of evidence to support DNN quality assessment.

B. Preliminary Study
First, we define Label Variation Ratio(LV R) to approx-
imate the distance between data and decision boundaries.

Definition 1 (Label Variation Ratio (LVR)). Given a model
M with dropout layers and an input data z, the number of
dropout predictions 7', LVR of z is defined as:

{k | 1<k< T/\LJV[k(m) = Lmax}|
T

LVR (M,z,T) = |

P
-
DI
- T
DR
-———

Bucket 3 Bucket2 Bucketl Bucketl Bucket2 Bucket3

Fig. 1. An example of the assumption of our technique. Data in the same
bucket are highlighted with the same marker.

where L M (2) is the k-th predicted label of z by M and L,,4,
is the dominant label of 7" predictions (i.e., the label predicted
by most predictions). Intuitively, the prediction of the data near
the boundary has low confidence, i.e., with lower LV R.

We then divide the data space into n buckets by splitting
the LV R into n equal intervals, where the range of LV R is
(0,1]. For example, if n is 2, then we have two buckets, and
the corresponding LV R intervals are (0, 0.5] and (0.5, 1]. A
data instance falls into a region based on its LVR value.

Definition 2 (Bucket). Given a dataset X, M and the number
of intervals n, we define the data that belong to t*" bucket as:

t t+1
Bucket(X,t,T) = {a: |z e X A —< LVR(M,z,T) < %

where 0 < ¢ < n and T is the number of dropout predictions.

Next, to validate the rationality of our assumption, we
conduct two preliminary studies to check 1) if data in the
same Bucket have similar accuracy, and 2) if there is a relation
between LV R and model accuracy (please refer to Section IV
for details of datasets and models). In the first study. We
randomly split the test data into two sets and assume one set
we already have the label information and the other is the new
unlabeled data. Then we activate the Dropout layers in each
model to predict these two sets multiple times (here, we set
the number of 7" as 50, which is the default setting of Aries).
Afterward, we calculate the LV R score of each data and
then split the data into different Buckets using Definition 2.
Finally, we check the accuracy of the model on the data that
are in the same Bucket. Fig. 2 presents the results of this
study. Note that we eliminate the results of data whose LV R
scores are smaller than 0.4 due to the negligible amount (e.g.,
only one in CIFAR-10, ResNet20). We can see that 1) the two
sets of data have similar accuracy in the Buckets regardless
of the datasets and models, 2) data with higher LV R scores



(closer to the decision boundary) have higher accuracy. This
finding justifies our assumption.
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Fig. 2. Accuracy in different Buckets. Original: labeled test data, New:
unlabeled new unlabeled data.

Finding 1: A DNN has similar accuracy on the data sets
that have similar distances to the decision boundary.

Second, we investigate if there is a relation between the
size of data with high LV R and the accuracy of the model
on this set. Usually, data with a high LV R score means the
model is confident in predicting this data. Intuitively, the size
of data that the model has high confidence could partly reflect
the model’s performance. Fig. 3 depicts the model accuracy
(x-axis) and the percentage of highly confident data (y-axis)
on each data set. Here, the highly confident data means their
LV R is 1. We can see that there is a clear linear relationship
between the two values. The results lead to our basic idea:
we can measure the percentage of highly confident data in the
new unlabeled data although we do not know the truth labels
of the new data. Then, based on existing test data with truth
labels, we can measure the accuracy of the datasets with a
certain ratio of highly confident data. Finally, we can estimate
the accuracy of unlabeled data.

Finding 2: There is a linear relationship between the %
of highly confident data (LV R = 1) and the accuracy of
the whole set. Therefore, given some labeled data, if we
know 1) the accuracy of the DNN in each Bucket, and 2)
the percentage of highly confident data, it is promising to
estimate the accuracy of the new unlabeled data.

C. Aries: Efficient Testing of DNNs

Based on the two findings, we propose a novel technique,
Aries, that can test the performance of DNN models without
requiring the label information. The key idea of Aries is to take
advantage of the labeled test sets to approximate the model
performance on the new unlabeled data. Algorithm 1 presents
the details of our technique which contains two main steps.
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Fig. 3. The linear relation (blue line) between the size of data with the highest
label variation ratio (y-axis, unit: ratio) and the test accuracy (z-axis, unit:
%). We apply the least squares polynomial fit to draw the blue line in each
figure.

Algorithm 1: Aries: efficient testing of DNNs
Input

: M: model with dropout layer
Xori: original test data with labels
Xnew: new data without labels
T': number of dropout predictions
n: number of buckets
Output : Accarics: estimated accuracy of Xy
correct_num =0
fori=0—>n—1do
Bucket Acc; = evaluate(M, Bucket(Xori, i,T));
correct_num+ = |Bucket(Xnew, i, T)| x Bucket Acc;;
end
Acchucket = correct_num/len (Xpew) ;

Accori = evaluate(M, Xori);
) _ |Bucket(Xnew,n—1)|/len(Xnew) .
Acceonfident = [Bucket(Xori,n=1)]/len(Xors) < Accori ;

AcCaries = average (Accbucket7 Accconfident) 5
return Accaries;

L-E- - B L I A

—
=

First, given a model M with dropout layers, the original
labeled data X,,;, the number of buckets n, and the dropout
prediction time T', Aries splits X,,; into n buckets according
to Definition 2, and calculate the accuracy of the data in each
bucket BucketAcc; (lines 2 and 3). Then, the same as the
Xori, we split X .., into n buckets and use the bucket accu-
racy BucketAcc; to estimate the correctly predicted number
correct_num of X, (line 4).

Then, we perform the accuracy estimation. First, according
to finding 1, Aries directly computes the accuracy using
the correct data number of new data in each bucket and
produces the first estimation Accpycrer (line 6). Then, based
on finding 2, we calculate the accuracy of the labeled data
first Acc,,; (line 7). Afterward, Aries computes the proportion
of the high confident data in the new unlabeled data to the
original test data, and then estimates the second accuracy
Acceonfident (line 8). In the end, since in practice, the
Acchucketr (ACCeonfident) over(under)-estimates the accuracy,
we compute the average of the two estimated accuracy as the



TABLE I
DETAILS OF DATASETS AND DNNSs

Dataset Classes  Training  Test DNN  Parameters Accuracy (%)

ResNet20 274442 87.44
CIFAR-10 10 S0k 10k VGG16 2859338 91.39
Tiny-ImageNet 200 100k 10k ResNet101 43036360 74.09

DenseNet121 7242504 70.70

final output of Aries, Accaries(line 9). We will detail explain
why we combine Accyycketr and AcCeon fident i section V.
Highlight that, Aries only requires N forward propagations to
work, which is significantly more efficient than the existing
training-based methods [14].

Example: Taking the cases in Fig. 1 as an example with
3 Buckets (n = 3), Bucketl, Bucket2, and Bucket3.
We assume that the accuracy of original test data (Accpqp)
in Bucketl, Bucket2, and Bucket3 are 60%, 70%, and
80%, respectively. And the number of original test data
(BucketS'ize,r;) in each part is 200, 300, and 400, respec-
tively. Then, for the new unlabeled data, the number of data
in each section (BucketSize,e.,) is 300, 400, and 500. Then
the Acey is calculated by (200 x 60% + 300 x 70% + 400 x
80%)/(200 + 300 + 400) = 72.22%. Next, assume that the
accuracy of the original test data is 70%, the Accs is calculated
by ((500/1200)/(400/900)) x 70% = 66.35%. The final
output of Aries is (72.22% + 66.35%)/2 = 69.29%.

In Aries, the dropout prediction plays an important role in
estimating the distance to decision boundaries. Therefore, the
dropout rate is the first potential influencing factor. Next, the
number of buckets that determines the splitting granularity
could be the second influencing factor. In addition, since our
technique uses dropout prediction and label change times to
approximate the distance between the data and the decision
boundaries, the distance approximation method is the third
influencing factor. In Section V-B we will explore the influence
and the best settings of Aries for these three factors.

IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of Aries, we conduct experi-
ments on two popular datasets, four DNN architectures, and 13
types of data transformations that are utilized to generate new
unlabeled data. Our in-depth evaluation answers the following
research questions:

RQ1: How effective is Aries in accuracy estimation?

RQ2: How does each component affect and contribute
to the effectiveness of Aries?

Subject datasets and DNN models. Table I presents the
details of datasets and models. CIFAR-10 [22] is a 10-class
dataset of color images, e.g., airplanes and birds. For this
dataset, we build two models, ResNet20 [23] and VGG16 [24].
Tiny-ImageNet [25] is a more complex dataset that contains
200 image categories, e.g., goldfish and monarch. For this
dataset, we use ResNet101 and DenseNet121. In our experi-
ments, we take the original test data for the decision boundary
analysis to estimate the accuracy of new data.

TABLE II
DETAILS OF DATA TRANSFORMATION METHODS USED FOR GENERATING
NEW UNLABELED DATA.

Data Type Description
Brightness Increase the brightness of the image data
Contrast Increase the contrast of the object

Defocus Blur (DB) Add the defocus blur effect to the image
Elastic Transform (ET)  Elastic deformation of images

Fog Add fog effect to the image

Frost Add frost effect to the image

Gaussian Noise (GN) Add Gaussian Noise perturbation to the image
Jpeg Compression (JC)  Change the image to Jpeg format

Motion Blur (MB) Add the motion blur effect to the image

Pixelate Convert image to pixelate style
Shot Noise (SN) Add noise by using the Poisson process
Snow Add snow effect

Zoom Blur (ZB) Zoom the image data

For the new unlabeled data preparation, we directly use the
popular natural robustness benchmark dataset [18] for our ex-
periments. This benchmark provides two datasets, CIFAR-10-
C and Tiny-ImageNet-C, that are generated by adding common
corruptions and perturbations into the original test data, e.g.,
by increasing the brightness of the image. It is widely used for
evaluating the model performance on distribution-shifted data
(unseen data). Besides, a recent study [13] also demonstrates
that these kinds of corrupted data can be regarded as out-of-
distribution data, because the distance between these data and
the original test data is farther than the distance between the
real out-of-distribution data and the original test data. In our
evaluation, we collect 13 common types that CIFAR-10 and
Tiny-ImageNet both include, shown in Table II.

Baseline. We first compare Aries with two SOTA labeling-
free model performance estimation methods:

1) Predicted Score-based Method (Predicted Score) as-
sumes that a test sample is correctly classified when its
maximum output probability is greater than a threshold 7.
In the experiments, we follow the same setting as [14] to
set the 7 as 0.7, 0.8, and 0.9.

2) Meta-set [14] is recently proposed three-step method. First,
Meta-set generates multiple diverse test sets by performing
different image transformations on the original test set.
Then, it computes the Frechet Distance (FD) between the
internal outputs of generated and original test sets. Finally,
a regression model is trained by using the FD score and
the accuracy of test sets. When new data come, Meta-
set calculates its FD score with the original test set and
then utilizes the regression model to estimate its accuracy.
In the experiments, we utilize both linear regression and
neural network regression to build the model. The sizes of
the meta set and sample set are set as 1000 and 10000,
respectively, following the original paper. In addition, we
considered the number of image transformations as 1, 2,
and 3, whereas the original paper only studied 3. In this
way, we build a strong baseline.

Then, we compare Aries with existing test selection-based
model evaluation methods, Cross Entropy-based Sampling



TABLE III
DETAILS OF OUR USED MODEL-LEVEL MUTATION OPERATORS.

Level Operator Description

Gaussian fuzzing
Weight Shuffle

Neuron Effect Block
Neuron Activation Inverse
Neuron Switch

Fuzz the weights using Gaussian noise

Weight Shuffle the weights in the same neuron

Block a neuron effect, i.e., change the output to 0
Invert the activation status
Switch two neurons in the same layer

Neuron

(CES) [12] and Practical Accuracy Estimation (PACE) [15], as
baselines. Besides, we also consider random selection as the
third baseline. Remarkably, all these three baselines require
selecting and labeling a subset from the new unlabeled data
to perform testing. We follow the same configuration as the
paper [15] to set the labeling budget from 50 to 180 in intervals
of 10 for test selection methods.

1) Cross Entropy-based Sampling (CES) selects the data
that have the minimum cross-entropy with the entire test
dataset. It starts from a randomly selected small size of
data and iteratively increases the size by adding other data
while controlling the cross-entropy.

2) Practical Accuracy Estimation (PACE) first clusters data
based on the output of the last hidden layer into different
groups by using the hierarchical density-based spatial clus-
tering of applications with noise clustering method, then
utilizes the example-based explanation algorithm MMD-
critic to select the most representative data from each group
to label and test the model.

Aries configuration. To reduce the number of hyperparam-
eters in Aries, we set the dropout prediction number to be
the same as the number of Buckets (I' = n in algorithm 1),
which means in each Bucket, all the data have the same LV R
score. Then, there are two remaining hyperparameters we need
to set 1) the number of Buckets we split and 2) the dropout
rate. The default setting of the number of Buckets and the
dropout rate in RQI is 50 and 0.5, respectively. In RQ2, we
study the different Bucket number settings 10, 50, 100, and
150, and different dropout rate settings 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9. Since the setting space is infinite and it’s
impossible to study all, we recommend the best one among our
studied settings and show that by this setting we can already
get acceptable estimation results.

Model mutation. In RQ2, we investigate if the DNN
model mutation [26], [27] can be used to replace the dropout
prediction for the distance of data to boundary approximation.
Similar to the dropout, mutation can produce a variant of the
original model with a similar accuracy without retraining the
model from scratch [26]. The difference is that the dropout
technique tends to fully ignore some randomly selected neu-
rons, while the mutation technique can also work on the weight
of neurons and the neuron status. First, we randomly use
the weight-level and neuron-level mutation operators provided
by [26] to generate mutants. The detailed information of the
operators is presented in table III. To preserve the quality of
the mutants, we set the mutation ratio as 0.1 (0.01) for CIFAR-
10 (Tiny-ImageNet) models, and the accuracy threshold as

0.9. Then, we follow the steps in Algorithm 1 to estimate
the accuracy of the model on the new unlabeled data.

Implementation and environments. We implement Aries
in Python based on TensorFlow [28] framework. For the base-
lines CES and PACE, we utilize their original implementation.
For model mutation, we use the available mutation framework
provided by the authors. We conduct all the experiments on a
2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA Tesla
V100 16G SXM2 GPU. To counteract randomized factors,
we repeat all the experiments 5 times and report the average
results in this paper. Due to the page limit, we put more
detailed results as well as the source code for reproducible
study of this paper at the companion site'.

V. RESULTS ANALYSIS
A. RQI: Effectiveness of Aries

Effectiveness on in-distribution data. First, we evaluate
the accuracy estimation effectiveness of the data (the two sets
randomly split from the original test data) used in our prelimi-
nary study (Section III-B). Table IV lists the results. Recall that
AcCpycket 18 the accuracy estimated by the Bucket accuracy.
AcCeonfident 1s the accuracy estimated by using the size of
high confident data. Accayies is the final estimated accuracy
of Aries, the weighted sum of Accyycker and Acceon fident-
We report Accyycker and AcCeon fident to verify the importance
of each component of our technique. The results demonstrate
that all three estimations can predict the model accuracy on the
new data that follow the same data distribution as the original
test data with the difference slightly ranging from 0.07% to
1.02%. In addition, it’s hard to determine which estimation is
the best since one can perform better or worse than the others
in different datasets and models.

TABLE IV
ESTIMATED ACCURACY AND THE ABSOLUTE DIFFERENCE BETWEEN
ESTIMATED ACCURACY AND REAL ACCURACY(%) ON THE TEST DATA
(NEW) USED IN THE PRELIMINARY STUDY. Real: REAL ACCURACY.
Acchuckets ACCeon fident» AND ACCAries REFER TO LINES 6, 8, AND 9 IN
ALGORITHM 1, RESPECTIVELY. THE BEST IS HIGHLIGHTED.

CIFAR-10 Tiny-ImageNet
ResNet20 VGG16 ResNet101 DenseNet121
Real 87.28 91.18 74.16 71.98
Acchycket 87.41 (0.13)  91.33 (0.15) | 73.73 (0.43)  71.93 (0.05)
Acceonfident | 87.35 (0.07) 90.81 (0.37) | 73.39 (0.77)  70.96 (1.02)
AcCAries 87.38 (0.10) | 91.07 (0.11) | 73.56 (0.60)  71.45 (0.54)

Effectiveness on data with distribution shift. In real-
world applications, software developers are more interested
in the data that follow various data distributions since after
the model has been deployed in the wild, the distribution
of new unlabeled data is uncontrollable. Thus, we evaluate
Aries using the data that contain different data distributions.
Table V summarizes the results of the accuracy estimation
on the 13 types of distribution-shifted test sets. The same
to the results of the preliminary study, we report all three
estimations here to analyze the contribution of each part.
Overall, different from the results on the original test data,
the Accaries is closer to the real accuracy in most cases



TABLE V
DIFFERENCE BETWEEN ESTIMATED AND REAL ACCURACY (%) UNDER DATA DISTRIBUTION SHIFTS. Real: REAL ACCURACY, AcChyckets ACCcon fident
AND AccArjes REFER TO LINES 6, 8, AND 9 IN ALGORITHM 1, RESPECTIVELY. META-SET-LINEAR(NN)-X MEANS META-SET WITH LINEAR (NEURAL

NETWORK) REGRESSION AND X TYPES OF IMAGE TRANSFORMATION COMBINATION. THE BEST ESTIMATION IS HIGHLIGHTED.

Dataset DNN Brigh Contrast DB ET Fog Frost GN JC MB Pixelate SN Snow 7B Avg.
Real 87.07 85.25 87.22 79.11 86.29 82.04 87.2 81.46 78.21 82.8 78.96 80.45 76.4 82.50
Predicted score (7 = 0.7) 6.48 6.72 5.81 9.78 6.22 8.59 5.82 5.58 10.76 8.92 10.51 10.49 10.09 8.14
Predicted score (7 = 0.8) 3.46 3.11 2.61 4.87 2.96 435 2.65 043 5.56 5.18 5.75 6.03 4.74 3.98
Predicted score (7 = 0.9) 1.33 22 1.95 238 1.79 1.48 1.99 8.27 1.98 0.18 0.97 0.15 3.37 2.16
Meta-set-Linear-1 8.91 7.86 9.16 2.76 8.41 538 9.14 4.56 3.48 5.65 3.75 3.69 3.00 5.83
Meta-set-Linear-2 25.87 24.57 26.09 19.13 25.28 21.85 26.07 21.11 19.33 2228 19.75 20.20 18.41 22.30
ResNet20 Meta-set-Linear-3 25.69 24.41 25.91 19.01 25.10 21.72 25.89 20.97 19.26 22.13 19.67 20.06 18.39 22.17
Meta-set-NN-1 5.11 7.99 4.51 4.85 8.16 10.87 4.53 9.21 3.30 8.27 11.36 6.52 2.87 6.73
Meta-set-NN-2 7.85 11.76 8.24 11.24 11.61 12.77 8.23 10.56 11.11 6.23 10.44 8.94 11.50 10.04
Meta-set-NN-3 3.71 2.85 3.88 5.53 1.41 7.44 3.91 3.96 4.90 3.55 5.34 4.97 7.86 4.56
AcChucket 0.26 0.90 0.09 4.03 0.42 273 0.10 231 433 291 375 324 5.04 232
Acceon fident 0.23 1.25 0.59 2.58 0.83 1.89 0.60 1.20 3.86 0.16 2.27 1.36 4.97 1.68
CIFAR-10 AcCAries 0.25 0.18 0.34 0.72 0.21 0.42 0.35 0.55 0.23 1.54 0.74 0.94 0.04 0.50
Real 91.41 90.96 91.78 88.69 91.15 87.39 91.78 87.12 89.55 88.81 85.97 85.77 88.55 89.15
Predicted score (7 = 0.7) 4.93 4.96 4.58 6.04 4.83 7.39 4.54 7.73 6.12 6.24 7.81 8.13 6.15 6.11
Predicted score (7 = 0.8) 2.65 2.57 2.62 3.41 2.59 4.61 2.58 5.24 3.82 3.85 533 4.89 3.56 3.67
Predicted score (7 = 0.9) 0.78 1.75 0.90 0.35 0.69 275 0.85 1.05 1.44 0.42 1.11 1.95 1.34 1.18
Meta-set-Linear-1 6.16 6.68 6.59 5.46 6.23 3.75 6.58 2.51 7.25 3.99 2.10 1.31 8.30 5.15
Meta-set-Linear-2 11.66 12.10 12.08 10.79 11.70 9.11 12.07 7.95 12.50 9.45 7.48 6.74 13.37 10.54
VGG16 Meta-set-Linear-3 17.41 17.74 17.83 16.30 17.41 14.67 17.82 13.63 17.90 15.16 13.07 12.40 18.52 16.14
Meta-set-NN-1 162.32 150.67 157.85 13552 15388  148.12 15793 14146 13733 154.80 14526  146.55 119.96  147.05
Meta-set-NN-2 18.56 9.53 16.85 6.00 12.95 9.27 16.79 10.99 5.89 15.56 8.86 13.11 6.09 11.57
Meta-set-NN-3 16.22 27.11 15.89 27.55 22.52 29.10 15.98 24.48 29.34 21.22 29.72 26.21 33.94 24.56
Acchycket 0.01 0.25 0.01 0.82 0.19 1.64 0.00 1.93 0.94 1.05 233 2.31 0.82 0.95
Acceon fident 0.65 1.79 1.47 0.99 0.51 6.85 1.26 3.38 1.99 5.68 1.78 5.21 245 2.62
CCAries 0.33 0.77 0.74 0.08 0.16 2.60 0.63 0.73 0.53 2.19 0.27 1.45 0.81 0.87
Real 63.93 50.18 55.77 5533 60.23 57.6 57.96 59.58 56.86 62.37 57.17 57.81 53.15 57.53
Predicted score (7 = 0.7) 53.92 47.55 50.88 49.74 52.42 50.94 50.08 55.57 50.07 54.83 51.31 4776 45.53 50.82
Predicted score (7 = 0.8) 60.77 51.87 55.05 54.09 57.68 56.46 56.27 57.80 55.42 59.58 55.63 55.59 53.37 56.12
Predicted score (7 = 0.9) 62.99 50.10 54.61 53.81 58.69 56.75 57.02 58.82 55.56 61.52 56.23 55.85 52.52 56.50
Meta-set-Linear-1 2.59 7.31 2.00 3.47 0.76 332 1.3 1.32 1.61 0.75 1.11 2.82 3.36 244
Meta-set-Linear-2 19.38 5.55 11.15 10.73 15.68 13.04 13.37 15.02 12.25 17.83 12.56 13.25 8.5 12.95
ResNet101 Meta-set-Linear-3 28.84 14.99 20.58 20.17 25.13 225 22.81 24.48 21.69 27.29 22 22.7 17.93 22.39
Meta-set-NN-1 49 11.4 2.73 4.06 0.28 2.57 3.75 3.46 1.92 3.28 3.56 1.92 579 3.82
Meta-set-NN-2 14.37 3.48 7.75 6.46 12.57 13.03 14.25 13.78 8.65 13.97 13.91 11.91 4.66 10.68
Meta-set-NN-3 25.6 16.54 18.91 18.09 24.32 25.21 26.73 24.38 19.76 25.03 26.52 23.48 16.43 22.38
Acchucket 4.48 10.76 7.80 7.61 570 7.00 7.03 6.26 727 522 727 6.55 9.16 7.09
AcCeon fident 5.06 10.83 7.03 7.45 6.81 6.44 6.58 5.97 7.12 5.32 6.66 773 1025 7.7
Tiny-ImageNet AcCaries 0.29 0.03 0.38 0.08 0.55 0.28 0.23 0.15 0.08 0.05 0.31 0.59 0.54 0.27
Real 58.26 36.19 449 46.94 53.58 49.83 51.85 5237 47.54 574 51.26 49.74 4228 49.40
Predicted score (7 = 0.7) 5.67 7.86 12.39 10.69 7.41 9.92 6.82 8.32 11.13 5.75 7.43 10.51 10.94 8.83
Predicted score (7 = 0.8) 15.00 4.98 10.42 12.74 13.68 12.53 17.20 13.42 11.92 15.06 14.78 12.78 9.79 12.64
Predicted score (7 = 0.9) 23.84 13.03 18.01 20.66 22.68 20.88 22.64 21.62 19.69 24.14 23.05 20.99 17.50 20.67
Meta-set-Linear-1 1.23 10.05 3.32 4.54 2.31 3.69 1.41 2.85 3.51 0.22 1.58 3.7 3.31 3.21
Meta-set-Linear-2 19.71 2.54 6.2 8.3 15.01 11.22 13.24 13.79 8.89 18.86 12.64 11.13 3.54 11.16
DenseNet121  Meta-set-Linear-3 29.07 6.7 15.46 17.59 24.36 20.54 22.55 23.13 18.18 28.23 21.95 20.45 12.77 20.08
Meta-set-NN-1 0.54 25 133 10.94 3.75 7.87 3.92 2.62 10.86 0.95 5.1 5.04 16.32 8.17
Meta-set-NN-2 18.26 0.11 529 7.93 16.83 13.69 15.28 15.53 8.25 19.58 14.13 14.81 2.68 11.72
Meta-set-NN-3 29.23 14.15 15.89 18.11 27.32 25.37 25.23 24.23 18.8 29.07 24.46 24.08 13.5 22.26
AcChycket 5.67 7.86 12.39 10.69 7.41 9.92 6.82 8.32 11.13 5.75 7.43 10.51 10.94 8.83
Acceon fident 5.80 7.11 7.42 10.98 8.14 7.66 6.06 7.32 7.33 5.68 6.31 6.68 10.12 7.43
CCAries 0.07 0.37 2.49 0.15 0.36 1.13 0.38 0.50 1.90 0.03 0.56 1.92 0.41 0.79

(42 out of 52) than Accpycket and Acceon fident- On average,
compared to the real accuracy, the difference of estimated
accuracy Accaries ranges from 0.03% to 2.60% across all
the datasets and models. And for each models, the average
difference of Accaries is smaller than 1% (0.52%, 0.91%,
0.27%, and 0.85% for ResNet20, VGG16, ResNet101, and
DenseNet121). Surprisingly, for Tiny-ImageNet, ResNet101,
which has the most complex model architecture among all the
models we considered, all the estimated biases are smaller than
0.59%. This means, our technique is flexible and still effective
on challenging datasets and models.

More specifically, the results reveal that, when we utilize
Aries to estimate the accuracy of distribution shifted data,
only considering the Accpycker O ACCeon fident 1S NOt enough,
especially on the complex task (e.g., Tiny-ImageNet). The
average difference of Accpycker and Acceon fident Of Tiny-
ImageNet is greater than 7%, which is a very big bias. To
understand why Accapes Works, we check the results of
Accpucker and Acceon fident Separately and find that, generally,
the Accpycrer 1S Over-estimation (48 out of 52 cases) while
the Acccon fident 1S under-estimation (48 out of 52 cases). We

conjecture that this is because the learned decision boundary
can not thoroughly work well on the data that have shifted
distribution. The potential reason is that, in fact, the perfor-
mance of the model on the high confident data (LV R is 1)
of the shifted data can be lower than the original test data,
e.g., 99.57% (original test data) vs 95.10% (Brightness data)
of CIFAR-10-VGG16 model. The data with high confidence
have a large proportion over all the data (e.g., there are
7969 data whose label consistent time is 50 for CIFAR-10-
VGGI16). Then, the results (line 4 in algorithm 1) can be
overestimated. On the other hand, there are more data that the
model has low confidence in but are still correctly predicted,
e.g., 43, 51, 44 (Brightness data) vs 24, 27, 18 (original test
data) when LV R times are 0.6, 0.62, and 0.64 of CIFAR-
10-VGG16 model. This can make the size of high confident
data in the shifted set as well as the Accconfident under-
estimation. However, Acca,ies finally averages the under- and
over-estimation and produces a more precise accuracy. In the
remaining experiments, we only report the results of Accapies-

Comparison with baselines. First, we compare Aries with
labeling-free methods. From Table V we can see that Aries
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Fig. 4. Comparison with test selection methods. Transformation: contrast.

outperforms the different configurations of the two baselines in
most cases (50 out of 52). Besides, considering the average re-
sults, Aries can always stand out. Then, we compare Aries with
test selection methods. Fig. 4 presents the results of shifted test
sets with the contrast transformation. Considering the results
produced by each test selection method, we found that there
are some conflicting conclusions compared to the original
papers. For example, [15] reports that PACE outperforms CES
in its evaluation settings. However, from our results, only in
CIFAR-10-VGG16-Contrast, PACE significantly outperforms
CES. Under other settings, the results of these two methods
fluctuate greatly. The same conflict occurs in random selection.
In our evaluation, the existing well-designed test selection
methods cannot consistently perform better than the random
selection. This phenomenon reflects that, the evaluation of
existing test selection methods for accuracy estimation is
insufficient. Distribution shifts in data should be considered.

By comparison, Aries achieves competitive results with test
selection methods. Although in some situations, selection-
based methods achieve better results than Aries, e.g., in
CIFAR-10-ResNet20-Brightness, when the labeling budget is
90, CES can estimate the accuracy more precisely. Overall,
our technique performs the best in most cases (96 out of
128). Besides, Aries achieves more stable performance than
the selection-based methods. For example, in CIFAR-10-
ResNet20-Brightness, the estimation bias of CES can vary
from 0.01% to 2.44% by using different labeling budgets,
which could waste human resources while obtaining unex-
pected results.

Answer to RQ1: Aries estimates the model accuracy with a
slight bias ranging from 0.03% to 2.60%. In addition, Aries
outperforms labeling-free methods in 50 out of 52 cases and
test selection-based methods in 96 out of 128 cases.

B. RQ2: Influencing Factor Study

Next, we explore how different configurations and settings
affect the performance of Aries. As mentioned in Section III-C,
there are three main factors we need to consider, the number
of buckets (n in algorithm 1), the dropout rate of the dropout
layer, and the distance approximation method.

Number of Buckets. Fig. 5 presents the results of the
accuracy estimation using Aries by different settings of the
bucket number. The first conclusion we can draw is that,
this factor has quite an impact on the results. For instance,
in ImageNet-DenseNet121-Contrast, using 10 buckets can
increase the accuracy difference by almost 10% than using
50 buckets. However, it’s clear that there is no such setting
that performs consistently better than others in all datasets
and models. For example, in CIFAR10-VGG16, n = 10 is
a relatively good setting. However, in CIFAR10-ResNet20,

= 10 is the worst among the four settings which means
the setting of Bucket number is highly datasets and model-
dependent. But if we check the more detailed values, we can
see that, in total, in 5, 28, 6, and 13 cases, using 10, 50,
100, and 150 buckets can achieve the best estimation results,
respectively. And on average, the differences between the
estimated accuracy and the real accuracy are 2.62%, 0.61%,
1.39%, and 1.61%, respectively. Therefore, for the number
of buckets, even though there can be no best setting, 50 is
recommended among the studied settings. Conclusion: The
number of Bucket highly impacts the performance of Aries.
However, this hyperparameter setting is dataset and model-
dependent. Thus, users should set this number according to
the real use cases. n = 50 is a default setting of Aries.
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Fig. 5. Accuracy difference (%) between the real accuracy and the estimated
accuracy by using different Bucket numbers.

Dropout Rate. Table VI presents the difference between the
real and estimated accuracy by Aries using different dropout
rates. Similar to the study of the Bucket number, there is no
dropout rate setting that can consistently outperform others.
But still, a relatively better setting exists through a deeper



TABLE VI
DIFFERENCE (%) BETWEEN THE REAL AND ESTIMATED ACCURACY BY Aries USING DIFFERENT DROPOUT RATES. DR: DROPOUT RATE.

Dataset DNN DR  Brightness Contrast DB ET Fog Frost GN JC MB Pixelate SN Snow 7B Avg.
0.1 0.31 127 0.10 479 044 333 008 391 582 320 560 484 640 | 3.08
0.2 0.26 0.94 003 353 039 264 011 312 399 266 443 403 467 | 237
03 0.15 0.45 037 245 020 1.8 033 239 258 2.29 340 321 304 | 175
0.4 0.19 0.14 029 155 [007 116 030 175 128 1.86 246 247 167 | 117
ResNet20 0.5 0.25 0.18 034 072 021 042 035 055 [ 023 1.54 074 094 [ 0.04 | 050
0.6 0.27 0.58 037 051 035 [036 027 042 137 1.33 052 142 148 | 071
0.7 038 122 055 238 090 150 048 [ 034 3.4 0.92 061 080 367 | 130
0.8 0.26 2.68 071 513 156 333 056 222 591 0.16 236 073 700 | 251
CIFAR-10 0.9 0.28 5.70 163 1076 391 806 157 640 1121 165 666 530 1416 | 595
0.1 0.09 0.03 024 015 011 | 056 009 099 | 023 055 082 079 | 055 | 040
0.2 0.25 023 013 137 003 089 025 056 070 | 031 073 103 185 | 0.64
0.3 0.08 0.09 050 229 [002° 178 061 147 109 0.83 209 203 297 | 122
0.4 0.04 0.29 058 328 0.3 312 046 241 202 1.41 052 [000 401 | 141
VGG16 0.5 0.33 0.77 074 [008 | 016 260 063 073 053 2.19 027 145 081 | 087
0.6 0.07 037 144 666 013 615 08 496 528 3.46 620 814 801 | 398
0.7 137 1.19 013 1116 093 928 100 787 980 450 765 1122 1275 | 6.07
0.8 2.14 7.92 309 1770 621 1439 131 1403 1651 666 1076 1533 2279 | 10.68
0.9 444 1812 2054 2727 119 1661 701 2087 2563 079 1075 2461 30.86 | 16.05
0.1 312 744 514 486 374 446 502 409 490 3385 397 402 618 | 475
0.2 2.36 5.24 333 301 225 301 360 272 278 276 342 231 419 | 3.5
0.3 137 323 173 136 075 181 202 123 142 1.57 178 082 257 | 167
0.4 0.18 1.29 001 | 060 [022° 037 029 024 [006 036 006 053 056 | 037
ResNetl0l 0.5 0.29 0.03 038 [ 008 055 | 028 023 0.5 008 0.05 031 059 | 054 | 027
0.6 L1t 1.44 169 270 201 165 144 175 214 130 236 308 168 | 187
0.7 1.82 3.10 292 336 282 266 294 315 272 256 380 426 337 | 3.04
0.8 0.16 3.95 330 403 232 416 303 252 283 186 404 399 336 | 3.04
Tiny-ImageNet 0.9 5.81 2.88 360 832 412 102 109 113 186 3.06 337 634 083 | 3.34
y-imag 0.1 024 54T 215 140 028 103 104 030 145 024 126 176 320 | 152
0.2 0.09 0.34 256 005 055 111 166 038 149 0.17 140 178 136 | 1.00
0.3 0.09 1.52 241 031 052 [ 084 136 034 162 0.14 162 208 1.09 | 1.07
0.4 0.36 0.83 271 046 [002° 145 160 075 184 0.15 176 242 066 | 115
DenseNet121 0.5 0.07 037 249 015 036 113 (038 050 190 | 003 056 192 041 [ 079
0.6 0.37 0.78 234 042 038 130 177 063 185 0.06 185 165 033 | 1.06
0.7 0.21 0.55 239 [001 | 060 100 108 035 157 035 200 192 107 | 101
0.8 0.46 039 215 015 037 098 135 033 | 143 0.62 133 [ 164 145 | 097
0.9 0.08 0.65 251 029 060 097 116 [[023 158 0.01 195 194 152 | 1.04
analysis. In total, in 6, 5, 3, 10, 19, 4, 2, 6, and 1 cases, 161 CIFAR10-ResNet20
CIFAR10-VGG16
the dropout rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 14 Tiny-ImageNet-ResNet101
achieve the best estimation results, respectively. This indicates CihyaThagsNELDenseNeL 21
that the dropout rate = 0.5 is the best among all the studied Q 1219
settings in terms of achieving the most precise estimation. £ 10
. .. a
Then, looking into the average results, we draw a similar > sd
conclusion that when we set the dropout rate as 0.5, in 3 (out g
. . O 61
of 4) cases, the estimated accuracy is closer to real accuracy g
compared to other settings. Fig. 6 depicts the trend of the 4
average difference between real and estimated accuracy by 21
using different dropout rates (Column Average in Table VI). 0
We can see that, the difference drops first when the dropout 01 02 03 04 05 06 07 08 09
rate increases, and after the dropout rate reaches around 0.5, Dropout Rate
the difference increases. Conclusion: There is no dropout rate ,
Fig. 6. The trend of the average difference between real accuracy and

setting that always performs the best. We recommend using
the dropout rate of around 0.5 for Aries to gain better results.

Mutant for Distance Estimation. Finally, since at each
prediction time, the dropout model can be seen as a mutant
of the original model, we explore if we can utilize model
mutation for replacing dropout prediction to approximate the
distance between data and decision boundaries.

Table VII presents the results of the comparison between
the two ways of approximating the distance between the data
and the decision boundaries. When replacing the dropout
with mutants (change M in Definition 1 to mutants), Aries
still works in some cases. For CIFAR-10, Aries with mu-
tants can still produce some acceptable results, e.g., in 10

estimated accuracy by using different dropout rates. The rate at 0.5 is a
common turning point of the accuracy difference for all datasets and models.

cases, the difference is smaller than 1%. Compared to Aries
with dropout, in 10 out of 26 cases, the mutant achieves
better results. On average, there are only 1.9% and 0.42%
effectiveness gaps between these two ways. However, the
performance of Aries with mutants becomes worse in Tiny-
ImageNet, and the difference increases significantly compared
to using dropout. In all the cases, Aries with mutants performs
worse than with dropout. This phenomenon indicates that Aries
with mutants can only work on simple datasets and models.



TABLE VII
COMPARISON BETWEEN DROPOUT AND MUTANT. EACH VALUE IS THE
ABSOLUTE DIFFERENCE BETWEEN REAL AND ESTIMATED ACCURACY (%).

CIFAR-10 Tiny-ImageNet
Data Type ResNet20 VGGI16 ResNet101 DesNet121
Mutant Dropout Mutant Dropout | Mutant Dropout Mutant Dropout

Brightness 0.12 0.25 0.01 033 4.49 0.29 6.71 0.07
Contrast 0.95 0.18 0.00 0.77 10.67 0.03 19.62 0.37
DB 0.24 0.34 0.15 0.74 7.80 0.38 14.08 2.49
ET 3.30 0.72 1.19 0.08 772 0.08 11.74 0.15
Fog 0.51 0.21 0.14 0.16 6.02 0.55 8.43 0.36
Frost 297 0.42 2.36 2.60 7.08 0.28 11.25 1.13
GN 0.25 0.35 0.21 0.63 7.28 0.23 9.94 0.38
JC 3.38 0.55 2.68 0.73 6.39 0.15 9.52 0.50
MB 4.04 0.23 1.17 0.53 7.34 0.08 12.77 1.90
Pixelate 2.80 1.54 1.56 2.19 543 0.05 6.43 0.03
SN 4.49 0.74 3.00 0.27 7.34 0.31 10.67 0.56
Snow 3.66 0.94 2.95 1.45 6.67 0.59 11.61 1.92
7B 4.50 0.04 1.26 0.81 9.28 0.54 15.50 0.41
Avg. 2.40 0.50 1.28 0.87 7.19 0.27 11.41 0.79

This is reasonable because, at each prediction time, the status
of the dropout model might be appeared in the training
process due to its design nature [29]. Thus, it can reflect the
learned decision boundary more precisely. However, the post-
training model mutation randomly modifies the model, which
could totally change the learned decision boundary even if it
maintains the accuracy. Conclusion: Aries with using mutants
can achieve similar accuracy estimation results with using
dropout in CIFAR-10 dataset, while fails in Tiny-ImageNet
dataset. It needs more careful mutation operator selection and
hyperparameter tuning to ensure the decision boundary does
not change too much after model mutation.

Answer to RQ2: The number of buckets and dropout rate
affect the performance of Aries. 50 and 0.5 are the recom-
mended settings, respectively. Simply replacing the dropout
with mutant can work on the simple dataset (CIFAR-10) but
fails on the complex dataset (Tiny-ImageNet).

VI. DISCUSSION AND THREAT TO VALIDITY
A. Limitations & Future Directions

Limitations. 1) The first potential limitation is that Aries
might suffer from adversarial attacks [30]. A strong adversarial
attack method can control the distance between the adversarial
examples and the decision boundaries by pushing the original
data close to or far away from the decision boundary, which
invalidates our learned boundary information. However, ad-
versarial attack is a common concern for all methods. For
example, for the output-based methods (PACE and CES),
white-box adversarial attacks can be designed to change the
output of the neurons to force these methods to select useless
data to label. How to defend against adversarial attacks is
an open problem. 2) The second limitation comes from our
assumption that we already have some labeled test data. In
general, this assumption can stand. However, in extreme cases
where only the model and new unlabeled data are available,
we still need to undertake data labeling.

Future directions. 1) We only utilize the original labeled
test data to gain the decision boundary information, and it
works well in our evaluation subjects. There could be a
way to do data augmentation based on the labeled data and
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increase the data space we have. In this way, we can learn
more precise boundary information and, therefore, make better
accuracy estimations for the new unlabeled data. 2) Although
dropout uncertainty is the widely studied uncertainty method
and works well in our technique, the mutant prediction is the
closest way to the dropout prediction. Some other uncertainty
methods can be used to approximate the distance between
data to the decision boundaries, e.g., DeepGini [31]. We plan
to study more methods and explore if there is a better way
to replace dropout prediction. On the other hand, adversarial
attacks can be used to achieve the same goal [32]. 3) Maybe
more interestingly, we tend to explore if Aries can be used
in other types of datasets and models, e.g., models for code
learning.

B. Threats to Validity

The internal threats to validity are the implementations of
our technique, the baselines, and mutation operators as well
as the preparation of new unlabeled data. Our technique is
simple and easy to implement and its core part is using pure
Python. Also, we release our code for future study. All the
implementations of the baselines and the mutation operators
are from the original papers. For the new unlabeled data, to
reduce the influence of parameter settings (e.g., which levels
of brightness should be added), we directly reuse the released
datasets that are widely studied in the literature.

The external threats to validity come from the selected
datasets and models for our evaluation. For the dataset, we use
two commonly studied ones from the recent research [33]-
[35]. For each dataset, we build two different model archi-
tectures from simple to complex. Compared to the existing
test selection works [12], [15] which stop by ResNet-50, our
considered model architectures are more complex (ResNet101
and DenseNet121). Besides, another threat that comes from
the model could be model calibration (roughly speaking, the
diversity of models) [36]. Actually, our evaluation involves
both well-calibrated and poorly-calibrated models. Indeed, the
Predicted score-based method can witness model calibration
to some extent. For CIFAR-10-VGG16, this method (with 7 =
0.9) reveals that around 90% of data have > 90% confidence,
thus, the model is over-confidence. For a similar reason, Tiny-
ImageNet-ResNet101 is under-confident. And for the new
unlabeled data, we also follow the previous works [37]-[39]
that evaluate the model robustness to prepare our test sets.
Even though collecting unlabeled data in the wild is a good
way to further evaluate our method. It is not easy to collect
and label massive new data. In this paper, we believe the
13 transformation techniques we used to simulate distribution
shifts can achieve high data diversity.

VII. RELATED WORK

A. Coverage Design and Automated Testing of DNNs

Recently, DNN testing has become a very active research
area [40]-[43], with quite a few techniques proposed to ensure
the quality of DNN from different angles. As a very early
testing technique, DeepXplore, proposed by Pei et al., first



defined the concept of neuron coverage and utilized it as
a measure to generate test data to test DNN models. After
that, Ma et al. proposed DeepGauge, which contains more
multi-granularity neuron coverage criteria, e.g., k-multisection
Neuron Coverage. Then, more practically, DeepTest [7] and
TACTIC [8] utilize the search-based method by using neuron
coverage as a search objective to synthesize test data to test the
DNN-based autonomous driving systems. Fuzz testing [44],
which is a famous testing technique in conventional software
engineering, has also been applied for DL testing recently [45].
Xie et al. proposed DeepHunter [46], which generates test data
by fuzzing while maximizing the neuron coverage. Different
from other methods, DeepHunter contains seed selection and
fuzzing as two phases. Besides, to enhance the model training
and improve the robustness of trained models, Gao et al. pro-
posed SENSEI [47] that can optimize the data augmentation
process by the genetic algorithm at the model training time.
Compared to these testing techniques that target proposing
testing criteria and test data generation methods to help DL
testing, our work focuses on efficiently testing DL models by
performance estimation.

B. Test Selection for DNN

As mentioned before, there are two categories of test
selection methods, test selection for data prioritization and
test selection for model performance estimation. For data
prioritization, Kim et al. [48] proposed two test adequacy
methods, Likelihood-based Surprise Adequacy (LSA) and
Distance-based Surprise Adequacy (DSA) by comparing the
likelihood and distance between the training data and test data.
They demonstrated these methods could be used to guide the
retraining to produce more accurate models. Feng et al. [31]
proposed DeepGini, a test prioritization technique based on
the statistical perspective of the output of DNN models. The
authors show that compared to the neuron coverage-based
methods, DeepGini is a better technique for misclassified data
indication and retraining guidance. More recently, Wang et
al. [19] proposed a mutation-based test prioritization method
that mutates both the input data and models to find the
sensitive test data. On the other hand, for the test selec-
tion for model performance estimation, there are two works,
PACE [15] and CES [12]. We introduced these two methods
in Section IV. More recently, few works conducted empirical
studies to explore the effectiveness of existing test selection
methods in terms of fault detection [49] and performance of
selection-based model repair [13]. Compared to the previous
works, the main advantage of our technique is that Aries does
not need any extra data labeling effort, which makes the whole
testing process for quality assessment of DNN automatic and
less expensive.

VIII. CONCLUSION

In this paper, we proposed Aries to automatically estimate
the accuracy of DNN models on unlabeled data without
labeling effort. The main intuition of Aries is that a model
should have similar prediction accuracy on the data that have
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similar distances to the decision boundaries. Specifically, Aries
employs the dropout uncertainty to approximate the distance
between data and decision boundaries and learns this boundary
information from the original labeled test data to estimate
the accuracy of new unlabeled data. Our evaluation of two
commonly studied datasets, four DNN architectures, and 13
types of unlabeled data demonstrated that Aries can precisely
predict the model accuracy. Besides, we demonstrated that
Aries outperforms SOTA labeling-free estimation methods and
test selection-based methods.

ACKNOWLEDGMENTS
This work is supported by the Luxembourg Na-
tional Research Funds (FNR) through CORE project

C18/1S/12669767/STELLAR/LeTraon. Lei Ma is supported in
part by JSPS KAKENHI Grant No.JP20H04168, JST-Mirai
Program Grant No.JPMJMI20BS, as well as Canada CIFAR
Al Chairs Program, and the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC No.RGPIN-2021-
02549, No.RGPAS-2021-00034, No.DGECR-2021-00019).

REFERENCES

[11 Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: face recognition
with very deep neural networks,” arXiv preprint arXiv:1502.00873,
2015.

M. Wang and W. Deng, “Deep face recognition: a survey,” Neurocom-
puting, vol. 429, pp. 215-244, 2021.

S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, vol. 37, no. 3, pp. 362-386, 2020.

K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Al-
buquerque, “Deep learning for safe autonomous driving: Current chal-
lenges and future directions,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 22, no. 7, pp. 4316-4336, 2020.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350-354, 2019.

D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu,
F. Qiu, H. Yu er al., “Towards playing full moba games with deep
reinforcement learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 621-632, 2020.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303—
314.

Z.Li, M. Pan, T. Zhang, and X. Li, “Testing dnn-based autonomous driv-
ing systems under critical environmental conditions,” in International
Conference on Machine Learning. PMLR, 2021, pp. 6471-6482.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems, vol. 32. Curran Associates, Inc., 2019.

G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 6, no. 2, pp. 173-210, 1997.

E. Engstrom, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” Information and Software Technol-
ogy, vol. 52, no. 1, pp. 14-30, 2010.

Z. Li, X. Ma, C. Xu, C. Cao, J. Xu, and J. Lii, “Boosting operational
dnn testing efficiency through conditioning,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
499-509.

Q. Hu, Y. Guo, M. Cordy, X. Xie, L. Ma, M. Papadakis, and Y. Le Traon,
“An empirical study on data distribution-aware test selection for deep
learning enhancement,” ACM Transactions on Software Engineering and
Methodology, vol. 31, no. 4, 2022.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]



[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

W. Deng and L. Zheng, “Are labels always necessary for classifier
accuracy evaluation?” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 15069-15078.

J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient deep neural network testing,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 29, no. 4, pp. 1-35, 2020.

J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang,
A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, T. Lee,
E. David, 1. Stavness, W. Guo, B. Earnshaw, 1. Haque, S. M. Beery,
J. Leskovec, A. Kundaje, E. Pierson, S. Levine, C. Finn, and P. Liang,
“Wilds: a benchmark of in-the-wild distribution shifts,” in Proceedings
of the 38th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139. PMLR, 18-24 Jul 2021, pp. 5637-5664. [Online].
Available: https://proceedings.mlr.press/v139/koh21a.html

D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang,
“Prioritizing test inputs for deep neural networks via mutation analysis,”
in IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 397-409.

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050-1059.

X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). 1EEE, 2020, pp. 739-
751.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Toronto, Ontario, Tech. Rep. 0,
2009.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, vol. 7, no. 7, p. 3, 2015.

Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:
a mutation testing framework for deep learning systems,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 1EEE, 2019, pp. 1158-1161.

N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: Mutation

testing of deep learning systems based on real faults,” in Proceedings of

the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2021, pp. 67-78.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning,” in 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), 2016, pp. 265-283.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929-1958, 2014.

K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial attacks and defenses
in deep learning,” Engineering, vol. 6, no. 3, pp. 346-360, 2020.

Y. Feng, Q. Shi, X. Gao, J. Wan, C. Fang, and Z. Chen, “Deepgini:
prioritizing massive tests to enhance the robustness of deep neural

12

(32]

[33]

[34]

[35]

(36]

(371

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

networks,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 177-188.

M. Ducoffe and F. Precioso, “Adversarial active learning for deep
networks: a margin based approach,” CoRR, vol. abs/1802.09841, 2018.
J. Cui, S. Liu, L. Wang, and J. Jia, “Learnable boundary guided
adversarial training,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 15721-15730.

J.Z. Bengar, J. van de Weijer, B. Twardowski, and B. Raducanu, “Reduc-
ing label effort: self-supervised meets active learning,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2021,
pp. 1631-1639.

K. Leino, Z. Wang, and M. Fredrikson, “Globally-robust neural net-
works,” in International Conference on Machine Learning. PMLR,
2021, pp. 6212-6222.

J. Nixon, M. W. Dusenberry, L. Zhang, G. Jerfel, and D. Tran, “Mea-
suring calibration in deep learning.” in CVPR workshops, vol. 2, no. 7,
2019.

D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
shminarayanan, “Augmix: a simple data processing method to improve
robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2019.
D. Hendrycks, A. Zou, M. Mazeika, L. Tang, D. Song, and J. Steinhardt,
“Pixmix: dreamlike pictures comprehensively improve safety measures,”
arXiv preprint arXiv:2112.05135, 2021.

D. Kang, Y. Sun, D. Hendrycks, T. Brown, and J. Steinhardt,
“Testing robustness against unforeseen adversaries,” arXiv preprint
arXiv:1908.08016, 2019.

H. B. Braiek and F. Khomh, “Deepevolution: a search-based testing
approach for deep neural networks,” in 2019 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME). 1EEE, 2019,
pp. 454-458.

C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and
A. Panichella, “Automated test cases prioritization for self-driving cars
in virtual environments,” arXiv preprint arXiv:2107.09614, 2021.

A. Panichella and C. C. Liem, “What are we really testing in mutation
testing for machine learning? a critical reflection,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). 1EEE, 2021, pp. 66-70.

J. Zhou, F. Li, J. Dong, H. Zhang, and D. Hao, “Cost-effective testing
of a deep learning model through input reduction,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 289-300.

P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151-166.

J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
739-743.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146-157.

X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz testing
based data augmentation to improve robustness of deep neural net-
works,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). 1EEE, 2020, pp. 1147-1158.

J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). 1EEE, 2019, pp. 1039-1049.
W. Ma, M. Papadakis, A. Tsakmalis, M. Cordy, and Y. L. Traon, “Test
selection for deep learning systems,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30, no. 2, pp. 1-22, 2021.



